Positional cloning of the wheat vernalization gene VRN1.

نویسندگان

  • L Yan
  • A Loukoianov
  • G Tranquilli
  • M Helguera
  • T Fahima
  • J Dubcovsky
چکیده

Winter wheats require several weeks at low temperature to flower. This process, vernalization, is controlled mainly by the VRN1 gene. Using 6,190 gametes, we found VRN1 to be completely linked to MADS-box genes AP1 and AGLG1 in a 0.03-centimorgan interval flanked by genes Cysteine and Cytochrome B5. No additional genes were found between the last two genes in the 324-kb Triticum monococcum sequence or in the colinear regions in rice and sorghum. Wheat AP1 and AGLG1 genes were similar to Arabidopsis meristem identity genes AP1 and AGL2, respectively. AP1 transcription was regulated by vernalization in both apices and leaves, and the progressive increase of AP1 transcription was consistent with the progressive effect of vernalization on flowering time. Vernalization was required for AP1 transcription in apices and leaves in winter wheat but not in spring wheat. AGLG1 transcripts were detected during spike differentiation but not in vernalized apices or leaves, suggesting that AP1 acts upstream of AGLG1. No differences were detected between genotypes with different VRN1 alleles in the AP1 and AGLG1 coding regions, but three independent deletions were found in the promoter region of AP1. These results suggest that AP1 is a better candidate for VRN1 than AGLG1. The epistatic interactions between vernalization genes VRN1 and VRN2 suggested a model in which VRN2 would repress directly or indirectly the expression of AP1. A mutation in the promoter region of AP1 would result in the lack of recognition of the repressor and in a dominant spring growth habit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wheat TILLING Mutants Show That the Vernalization Gene VRN1 Down-Regulates the Flowering Repressor VRN2 in Leaves but Is Not Essential for Flowering

Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1). Extended exposures to low temperatures during the winter (vernalization) induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1), which is mainl...

متن کامل

The CArG-box located upstream from the transcriptional start of wheat vernalization gene VRN1 is not necessary for the vernalization response.

In diploid wheat (Triticum monococcum), and likely in other Triticeae species, the VRN1 gene is essential for the initiation of the reproductive phase, and therefore, a detailed characterization of its regulatory regions is required to understand this process. A CArG-box (MADS-box-binding site) identified in the VRN1 promoter upstream from the transcription initiation site has been proposed as ...

متن کامل

Wheat gene for all seasons.

Diverse seasonal flowering behaviors drive global adaption of bread wheat (Triticum aestivum), the major crop grown in temperate zones worldwide. Many wheats are sown in autumn and flower only after experiencing the prolonged cold of winter (vernalization). By delaying flowering until spring, the requirement for vernalization minimizes the risk that frost-sensitive flowers and developing grain ...

متن کامل

Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering.

Members of the grass subfamily Pooideae are characterized by their adaptation to cool temperate climates. Vernalization is the process whereby flowering is accelerated in response to a prolonged period of cold. Winter cereals are tolerant of low temperatures and flower earlier with vernalization, whereas spring cultivars are intolerant of low temperatures and flower later with vernalization. In...

متن کامل

ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals.

In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 10  شماره 

صفحات  -

تاریخ انتشار 2003